A class of probabilistic models for the Schrödinger equation
نویسنده
چکیده
A class of stochastic particle models for the spatially discretized time-dependent Schrödinger equation is constructed. Each particle is characterized by a complex-valued weight and a position. The particle weights change according to some deterministic rules between the jumps. The jumps are determined by the creation of offspring. The main result is that certain functionals of the particle systems satisfy the Schrödinger equation. The proofs are based on the theory of piecewise deterministic Markov processes.
منابع مشابه
Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملProbabilistic Landslide Risk Analysis and Mapping (Case Study: Chehel-Chai Watershed, Golestan Province, Iran)
The efficiency of three statistical models, AHP surface-weighted density bivariate (semi-quantitative models), stepwise multivariate regression and logistic multivariate regression models were compared in Chehel-Chai watershed in Golestan province, Iran. In current study the hazard map was prepared according to the top model of landslide hazard map. Chehel-Chai watershed is located as one of Go...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملInvestigation of analytical and numerical solutions for one-dimensional independent-oftime Schrödinger Equation
In this paper, the numerical solution methods of one- particale, one – dimensional time- independentSchrodinger equation are presented that allows one to obtain accurate bound state eigen values andeigen functions for an arbitrary potential energy function V(x). These methods included the FEM(Finite Element Method), Cooly, Numerov and others. Here we considered the Numerov method inmore details...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Monte Carlo Meth. and Appl.
دوره 21 شماره
صفحات -
تاریخ انتشار 2015